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I.   INTRODUCTION 

In mathematics, the Riemann-Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann 

and Thomas Joannes Stieltjes. The integral was first defined by Stielges in 1894 [1]. It is an instructive and practical 

forerunner of the Lebesgue integral and a valuable tool for unifying equivalent forms of statistical theorems applicable to 

discrete and continuous probability.  

The Riemann-Stieltjes integral appears in the original formulation of F. Riesz's theorem, which represents the dual space of 

the Banach space 𝐶[𝑎, 𝑏] of continuous functions in an interval [𝑎, 𝑏] as Riemann-Stieltjes integrals of functions of bounded 

variation. Later, that theorem was reformulated in terms of a measure. The Riemann-Stieltjes integral also appears in the 

formulation of the spectral theorem for (non-compact) self-adjoint (or more generally, normal) operators in a Hilbert space. 

In this theorem, the integral is considered with respect to a spectral family of projections [2]. 

Based on the Riemann-Stieltjes integral, this paper obtains a new definition of derivative, and establishes a new theory of 

calculus. In addition, we also studied some important properties of this new calculus, such as product rule, quotient rule, 

chain rule, and fundamental theorem of calculus. In fact, our results are generalizations of the results in classical calculus. 

The theory of Riemann-Stieltjes integral can be referred to [3-4]. For books on the theory of calculus, we can refer to [5-6]. 

II.   PRELIMINARIES 

Firstly, let's review the definition of Riemann-Stieltjes integral. 

Definition 2.1: Let 𝑓, 𝑔: [𝑎, 𝑏] → 𝑅. If the limit 

                                                                                 lim
‖∆‖→0

∑ 𝑓(𝜉𝑘)𝑚
𝑘=1 (𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1))  

exists, where ∆= {𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚 = 𝑏} is a partition of the interval [𝑎, 𝑏], 𝜉𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘],  ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1, and 

‖∆‖ = max
𝑘=1,⋯,𝑚

{∆𝑥𝑘}. Then it is called the Riemann-Stieltjes integral of 𝑓 with respect to 𝑔 over [𝑎, 𝑏]. We denote that 

                                            lim
‖∆‖→0

∑ 𝑓(𝜉𝑘)𝑚
𝑘=1 (𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)) = ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = ∫ 𝑓

𝑏

𝑎
𝑑𝑔,                                    (1)   

and denote that 𝑓 ∈ 𝑅(𝑔, [𝑎, 𝑏]). In particular, if (𝑥) = 𝑥 , then ∫ 𝑓
𝑏

𝑎
𝑑𝑔 =  ∫ 𝑓

𝑏

𝑎
𝑑x , which is the Riemann integral of 𝑓  
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on [𝑎, 𝑏]. 

In the following, we introduce a new definition of derivative based on Riemann-Stieltjes integral. 

Definition 2.2: If 𝑥0 ∈ (𝑎, 𝑏) and 𝑓(𝑥), 𝑔(𝑥) are functions defined on (𝑎, 𝑏). If the limit 

                                                                                                   lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
                                                                         (2) 

exists, then we say that 𝑓 is  differentiable with respect to 𝑔 at 𝑥0. If 𝑓(𝑥) are differentiable with respect to 𝑔 at all 𝑥 ∈

(𝑎, 𝑏), the we say 𝑓 is a differentiable function with respect to 𝑔 on (𝑎, 𝑏), and denoted by 𝑓 ∈ 𝐷(𝑔, (𝑎, 𝑏)). Moreover, the 

derivative of 𝑓(𝑥) with respect to 𝑔 at 𝑥0 is denoted by 

                                                                          𝑓𝑔 ’(𝑥0) =
𝑑

𝑑𝑔(𝑥)
𝑓(𝑥)|

𝑥=𝑥0

=  lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
 .                                            (3)       

And we know that if 𝑔(𝑥) = 𝑥, then 𝑓𝑔 ’(𝑥0) = 𝑓’(𝑥0), which is  the usual derivative of 𝑓(𝑥) at  𝑥0. On the other hand, we 

define  

                                                        𝑓𝑔
(𝑝)

(𝑥0) =
𝑑𝑝

𝑑𝑔(𝑥)𝑝 𝑓(𝑥)|
𝑥=𝑥0

= (
𝑑

𝑑𝑔(𝑥)
) (

𝑑

𝑑𝑔(𝑥)
) ∙∙∙ (

𝑑

𝑑𝑔(𝑥)
) 𝑓(𝑥)|

𝑥=𝑥0

  ,                           (4) 

the 𝑝-th order derivative of 𝑓(𝑥) with respect to 𝑔 at 𝑥0, where 𝑝 is a positive integer.  

Theorem 2.3 (Mean Value Theorem for Integrals): If 𝑔 is a monotone increasing function on [𝑎, 𝑏], 𝑓 is a continuous 

function on [𝑎, 𝑏], then there is 𝑐 ∈ [𝑎, 𝑏] such that  

                                                                                 ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑐)[𝑔(𝑏) − 𝑔(𝑎)].                                                    (5) 

Proof   We may assume that 𝑔(𝑏) ≠ 𝑔(𝑎). Since 𝑓 is a continuous function on [𝑎, 𝑏], it follows that 𝑓 have a maximum 

value 𝑀 and a minimum value 𝑚 on [𝑎, 𝑏]. Since 𝑔 is monotone increasing on [𝑎, 𝑏], we have 

                                                                   ∫ 𝑚
𝑏

𝑎
𝑑𝑔(𝑥) ≤ ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) ≤ ∫ 𝑀

𝑏

𝑎
𝑑𝑔(𝑥) .                                                   (6) 

That is, 

                                                        𝑚 [𝑔(𝑏) − 𝑔(𝑎)] ≤ ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) ≤  𝑀[𝑔(𝑏) − 𝑔(𝑎)] .                                           (7) 

Therefore, 

                                                                                     𝑚 ≤
∫ 𝑓

𝑏
𝑎 (𝑥)𝑑𝑔(𝑥)

𝑔(𝑏)−𝑔(𝑎)
≤ 𝑀 .                                                                           (8) 

Since 𝑓 is a continuous function on [𝑎, 𝑏], there is 𝑐 ∈ [𝑎, 𝑏] such that  
∫ 𝑓

𝑏
𝑎 (𝑥)𝑑𝑔(𝑥)

𝑔(𝑏)−𝑔(𝑎)
= 𝑓(𝑐), and hence the desired result 

holds.                

III.   MAIN RESULTS 

In this section, we obtain some important properties of this new calculus. 

Proposition 3.1: Let 𝜆, 𝐶 be real numbers, If 𝑓, 𝑔, ℎ: [𝑎, 𝑏] → 𝑅 and 𝑓, ℎ are differentiable with respect to 𝑔 at 𝑥0 ∈ (𝑎, 𝑏), 

then  

                                                                             (𝑓 + ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) + ℎ𝑔 ’(𝑥0),                                                         (9) 

                                                                             (𝑓 − ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) − ℎ𝑔 ’(𝑥0),                                                        (10) 

                                                                             (𝜆𝑓)𝑔 ’(𝑥0) = 𝜆𝑓𝑔 ’(𝑥0),                                                                              (11) 

                                                                                              (𝐶)𝑔 ’ = 0.                                                                                      (12) 

Theorem 3.2: If  𝑔 is continuous at 𝑥0, and 𝑓 is differentiable with respect to 𝑔 at 𝑥0 , then 𝑓 is continuous at 𝑥0. 
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Proof Since   lim
𝑥→𝑥0

[𝑓(𝑥) − 𝑓(𝑥0)] = lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
∙ lim

𝑥→𝑥0

[𝑔(𝑥) − 𝑔(𝑥0)] = 𝑓𝑔 ’(𝑥0) ∙ 0 = 0 , it follows that 𝑓  is 

continuous at 𝑥0.                                                                                                                                                                                   q.e.d. 

Theorem 3.3 (Product Rule for this New Derivative): If 𝑔 is continuous at 𝑥0, 𝑎𝑛𝑑 𝑓, ℎ are differentiable with respect to 

𝑔 at 𝑥0, then 𝑓 ∙ ℎ is differentiable with respect to 𝑔 at  𝑥0 , and 

                                                                            (𝑓 ∙ ℎ)𝑔’(𝑥0) = 𝑓𝑔 ’(𝑥0) ∙ ℎ(𝑥0) + 𝑓(𝑥0) ∙ ℎ𝑔 ’(𝑥0).                                 (13) 

Proof   Since 𝑔 is continuous at 𝑥0 , it follows from Theorem 3.2 that ℎ are continuous at 𝑥0, and 

                                               (𝑓 ∙ ℎ)𝑔’(𝑥0) = lim
𝑥→𝑥0

𝑓(𝑥)∙ℎ(𝑥)−𝑓(𝑥0)∙ℎ(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
  

                                                                        = lim
𝑥→𝑥0

[𝑓(𝑥)−𝑓(𝑥0)]∙ℎ(𝑥)+𝑓(𝑥0)∙[ℎ(𝑥)−ℎ(𝑥0)]

𝑔(𝑥)−𝑔(𝑥0)
  

                                                                        = lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
∙ lim

𝑥→𝑥0

ℎ(𝑥) + 𝑓(𝑥0) ∙ lim
𝑥→𝑥0

ℎ(𝑥)−ℎ(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
  

                                                                        = 𝑓𝑔 ’(𝑥0) ∙ ℎ(𝑥0) + 𝑓(𝑥0) ∙ ℎ𝑔 ’(𝑥0).                                                  q.e.d.  

Remark 3.4: It is easy to see that in Theorem 3.3, the condition ' 𝑔 is continuous at 𝑥0′ can be replaced by 'function 𝑓 or ℎ 

is continuous at 𝑥0′. 

Theorem 3.5 (Quotient Rule): If function ℎ is continuous at 𝑥0, ℎ(𝑥0) ≠ 0, 𝑎𝑛𝑑 𝑓, ℎ are differentiable with respect to 𝑔 at 

𝑥0, then 
𝑓

ℎ
 differentiable with respect to 𝑔 at 

𝑓(𝑥0)

ℎ(𝑥0)
 , and 

                                                                            (
𝑓

ℎ
)

𝑔
’(𝑥0) =

𝑓𝑔 ’(𝑥0)∙ℎ(𝑥0)−𝑓(𝑥0)∙ℎ𝑔 ’(𝑥0)

ℎ2(𝑥0)
.                                                         (14) 

Proof                             (
𝑓

ℎ
)

𝑔
’(𝑥0) = lim

𝑥→𝑥0

𝑓(𝑥)

ℎ(𝑥)
 −

𝑓(𝑥0)

ℎ(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
  

                                                           = lim
𝑥→𝑥0

𝑓(𝑥)∙ℎ(𝑥0)−𝑓(𝑥0)∙ℎ(𝑥)

[𝑔(𝑥)−𝑔(𝑥0)]∙ℎ(𝑥)∙ℎ(𝑥0)
  

                                                           = lim
𝑥→𝑥0

[𝑓(𝑥)−𝑓(𝑥0)]∙ℎ(𝑥0)−𝑓(𝑥0)∙[ℎ(𝑥)−ℎ(𝑥0)]

[𝑔(𝑥)−𝑔(𝑥0)]∙ℎ(𝑥)∙ℎ(𝑥0)
  

                                                           = lim
𝑥→𝑥0

1

ℎ(𝑥)
∙ lim

𝑥→𝑥0

[𝑓(𝑥)−𝑓(𝑥0)]

[𝑔(𝑥)−𝑔(𝑥0)]
−

𝑓(𝑥0)

ℎ(𝑥0)
∙ lim

𝑥→𝑥0

1

ℎ(𝑥)
∙ lim

𝑥→𝑥0

[ℎ(𝑥)−ℎ(𝑥0)]

[𝑔(𝑥)−𝑔(𝑥0)]
       

                                                           =
1

ℎ(𝑥0)
𝑓𝑔 ’(𝑥0) −

𝑓(𝑥0)

ℎ2(𝑥0)
∙ ℎ𝑔 ’(𝑥0)     

                                                           =
𝑓𝑔 ’(𝑥0)∙ℎ(𝑥0)−𝑓(𝑥0)∙ℎ𝑔 ’(𝑥0)

ℎ2(𝑥0)
.                                                                            q.e.d.     

Theorem 3.6 (Leibniz Rule): If p is a positive integer, function 𝑔 is continuous at 𝑥0, 𝑎𝑛𝑑 𝑓, ℎ are 𝑝 times differentiable 

with respect to 𝑔 at 𝑥0, then  

                                                                 (𝑓 ∙ ℎ)𝑔
(𝑝)

(𝑥0) = ∑ (
𝑝
𝑘

)
𝑝
𝑘=0 𝑓𝑔

(𝑘)(𝑥0) ∙ ℎ𝑔
(𝑝−𝑘)(𝑥0).                                          (15) 

Where (
𝑝
𝑘

) =
𝑝!

𝑘!(𝑝−𝑘)!
 . 

Proof  We use induction. The case 𝑝 = 1 is the product rule. Assume that the case 𝑝 = 𝑚 holds, i.e., 

                                                                 (𝑓 ∙ ℎ)𝑔
(𝑚)

(𝑥0) = ∑ (
𝑚
𝑘

)𝑚
𝑘=0 𝑓𝑔

(𝑘)(𝑥0) ∙ ℎ𝑔
(𝑚−𝑘)(𝑥0).                                        (16) 

Then      

                 (𝑓 ∙ ℎ)𝑔
(𝑚+1)

(𝑥0) 
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             =
𝑑

𝑑𝑔
[(𝑓 ∙ ℎ)𝑔

(𝑚)
](𝑥0) 

             =
𝑑

𝑑𝑔
[∑ (

𝑚
𝑘

)𝑚
𝑘=0 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘)] (𝑥0)   

             = [∑ (
𝑚
𝑘

)𝑚
𝑘=0 [𝑓𝑔

(𝑘+1)
∙ ℎ𝑔

(𝑚−𝑘) + 𝑓𝑔
(𝑘)

∙ ℎ𝑔
(𝑚−𝑘+1)]] (𝑥0)   

             = [∑ (
𝑚
𝑘

)𝑚
𝑘=0 𝑓𝑔

(𝑘+1)
∙ ℎ𝑔

(𝑚−𝑘) + ∑ (
𝑚
𝑘

)𝑚
𝑘=0 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘+1)] (𝑥0)  

             = [𝑓𝑔
(𝑚+1)

∙ ℎ𝑔
(0) + ∑ (

𝑚
𝑘

)𝑚−1
𝑘=0 𝑓𝑔

(𝑘+1)
∙ ℎ𝑔

(𝑚−𝑘) + 𝑓𝑔
(0)

∙ ℎ𝑔
(𝑚+1) + ∑ (

𝑚
𝑘

)𝑚
𝑘=1 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘+1)] (𝑥0)  

             = [𝑓𝑔
(0)

∙ ℎ𝑔
(𝑚+1) + ∑ (

𝑚
𝑘 − 1

)𝑚
𝑘=1 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘+1) + ∑ (
𝑚
𝑘

)𝑚
𝑘=1 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘+1)+𝑓𝑔
(𝑚+1)

∙ ℎ𝑔
(0)] (𝑥0)  

             = [𝑓𝑔
(0)

∙ ℎ𝑔
(𝑚+1) + ∑ (

𝑚 + 1
𝑘

)𝑚
𝑘=1 𝑓𝑔

(𝑘)
∙ ℎ𝑔

(𝑚−𝑘+1)+𝑓𝑔
(𝑚+1)

∙ ℎ𝑔
(0)] (𝑥0)  

             = ∑ (
𝑚 + 1

𝑘
)𝑚+1

𝑘=0 𝑓𝑔
(𝑘)(𝑥0) ∙ ℎ𝑔

(𝑚−𝑘+1)(𝑥0).   

Thus, the case 𝑝 = 𝑚 + 1 holds. By induction, the desired result holds.                                                          q.e.d. 

Theorem 3.7 (Chain Rule): If the function ℎ is continuous at  𝑥0, ℎ is differentiable with respect to 𝑔 at 𝑥0 , and 𝑓  is 

differentiable at ℎ(𝑥0), then the composite function 𝑓 ∘ ℎ is differentiable with respect to 𝑔 at 𝑥0, and 

                                                                            (𝑓 ∘ ℎ)𝑔’(𝑥0) = 𝑓 ’(ℎ(𝑥0)) ∙ ℎ𝑔 ’(𝑥0).                                                   (17) 

 Proof :        (𝑓 ∘ ℎ)𝑔’(𝑥0) = lim
𝑥→𝑥0

𝑓(ℎ(𝑥))−𝑓(ℎ(𝑥0))

𝑔(𝑥)−𝑔(𝑥0)
  

                                                = lim
𝑥→𝑥0

𝑓(ℎ(𝑥))−𝑓(ℎ(𝑥0))

ℎ(𝑥)−ℎ(𝑥0)
∙ lim

𝑥→𝑥0

ℎ(𝑥)−ℎ(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
  

                                                = lim
ℎ(𝑥)→ℎ(𝑥0)

𝑓(ℎ(𝑥))−𝑓(ℎ(𝑥0))

ℎ(𝑥)−ℎ(𝑥0)
∙ lim

𝑥→𝑥0

ℎ(𝑥)−ℎ(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
  (since ℎ is continuous at 𝑥0) 

                                                = 𝑓 ’(ℎ(𝑥0)) ∙ ℎ𝑔 ’(𝑥0).                                                                                 q.e.d.  

Remark 3.8: In Theorem 3.7, the condition ' ℎ is continuous at 𝑥0′ can be replaced by '𝑔 is continuous at 𝑥0′.    

In the following, we derive the mean value theorem for this new derivative. At first, we need some lemmas. 

Theorem 3.9 (Fermat’s Theorem): Suppose that 𝑔 is a strictly increasing function. If 𝑥0 is an extreme point of 𝑓, and 

𝑓𝑔 ’(𝑥0) exists, then 𝑓𝑔 ’(𝑥0) = 0. 

Proof   Since 𝑓𝑔 ’(𝑥0) exists, it follows that lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
 exists. If  𝑥0 is a local maximum point of 𝑓, that is, 𝑓(𝑥0) ≥

𝑓(𝑥) on some neighbourhood of 𝑥0. Then 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
≤ 0 if ≥ 𝑥0 . It follows that lim

𝑥→𝑥0
+

 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
≤ 0. On the other hand, 

if 𝑥 ≤ 𝑥0, then 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
≥ 0, and hence lim

𝑥→𝑥0
−

 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
≥ 0. Therefore, lim

𝑥→𝑥0

 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
= 0. Thus,  𝑓𝑔 ’(𝑥0) = 0. The 

case that 𝑥0 is a local minimum point of 𝑓 can be proved in the same way.                                             q.e.d. 

Theorem 3.10 (Rolle’s Theorem): Assume that 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is continuous on [𝑎, 𝑏] and 

is differentiable with respect to 𝑔 on (𝑎, 𝑏) and 𝑓(𝑎) = 𝑓(𝑏), then there exists 𝜉 ∈ (𝑎, 𝑏) such that  𝑓𝑔 ’(𝜉) = 0. 

Proof   Since  𝑓 is continuous on closed interval [𝑎, 𝑏], 𝑓 must have a maximum value M and a minimum value m on [𝑎, 𝑏]. 

If 𝑀 = 𝑚, then 𝑓 is a constant function, and hence 𝑓𝑔 ’(𝜉) = 0 for all 𝜉 ∈ (𝑎, 𝑏). If 𝑀 > 𝑚, since 𝑓(𝑎) = 𝑓(𝑏), it follows 

that there is  𝜉 ∈ (𝑎, 𝑏) such that 𝑓(𝜉) = 𝑀 or 𝑓(𝜉) = 𝑚.  And hence  𝜉 is an extreme point of 𝑓. By Fermat’s theorem,  

𝑓𝑔 ’(𝜉) = 0.                                                                                                                              q.e.d. 

Using Rolle’s theorem, we obtain the following  

about:blank
about:blank


                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 12, Issue 1, pp: (37-43), Month: January - April 2025, Available at: www.noveltyjournals.com 

 

Page | 41 
Novelty Journals 

Theorem 3.11 (Mean Value Theorem for Derivatives): Let 𝑔 be a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is continuous 

on closed interval [𝑎, 𝑏] and differentiable with respect to 𝑔 on open interval (𝑎, 𝑏), then there exists  𝜉 ∈ (𝑎, 𝑏) such that  

                                                                                   𝑓(𝑏) − 𝑓(𝑎) = 𝑓𝑔 ’(𝜉)[𝑔(𝑏) − 𝑔(𝑎)].                                                   (18) 

Proof   Let 

                                                                      ℎ(𝑥) = 𝑓(𝑥) − [𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 [𝑔(𝑥) − 𝑔(𝑎)]].                                          (19) 

Since  

                                                                                  ℎ𝑔 ’(𝑥) =  𝑓𝑔 ’(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
                                                                 (20) 

for all  𝑥 ∈ (𝑎, 𝑏). Moreover, 

                                                                   ℎ(𝑎) = 𝑓(𝑎) − [𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 [𝑔(𝑎) − 𝑔(𝑎)]] = 0,                                    (21) 

                                                                   ℎ(𝑏) = 𝑓(𝑏) − [𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 [𝑔(𝑏) − 𝑔(𝑎)]] = 0.                                    (22) 

It follows from Rolle’s theorem that there is  𝜉 ∈ (𝑎, 𝑏) such that   ℎ𝑔 ’(𝜉) = 0. And hence,  

                                                                                         𝑓𝑔 ’(𝜉) =
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 .                                                                          (23) 

Therefore, 

                                                                                 𝑓(𝑏) − 𝑓(𝑎) = 𝑓𝑔 ’(𝜉)[𝑔(𝑏) − 𝑔(𝑎)].                                                  q.e.d. 

Corollary 3.12: Suppose that 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓 is continuous on [𝑎, 𝑏]and differentiable with 

respect to 𝑔 on open interval (𝑎, 𝑏) such that  𝑓𝑔 ’(𝑥) = 0  for all  𝑥 ∈ (𝑎, 𝑏). Then 𝑓 is a constant function on (𝑎, 𝑏). 

Proof   If  𝑓 is not a constant function on (𝑎, 𝑏), then there exist  𝑥1, 𝑥2 such that 

                                                                                 𝑎 < 𝑥1 < 𝑥2 < 𝑏   and   𝑓(𝑥1) ≠ 𝑓(𝑥2).                                                (24) 

By mean value theorem for derivative, we obtain 

                                                                                              𝑓𝑔 ’(𝜉) =
𝑓(𝑥2)−𝑓(𝑥1)

𝑔(𝑥2)−𝑔(𝑥1)
                                                                       (25) 

for some  𝜉 ∈ (𝑥1, 𝑥2). Therefore, 

                                                                                                     𝑓𝑔 ’(𝜉) ≠ 0,                                                                              (26) 

which is a contradiction. 

Corollary 3.13: Suppose that 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓, ℎ are continuous on [𝑎, 𝑏] and differentiable 

with respect to 𝑔 on (𝑎, 𝑏) such that  𝑓𝑔 ’(𝑥) = ℎ𝑔 ’(𝑥)  for all  𝑥 ∈ (𝑎, 𝑏). Then there is a constant 𝐶 such that 𝑓(𝑥) =

ℎ(𝑥) + 𝐶 for all  𝑥 ∈ (𝑎, 𝑏). 

Proof  Since  (𝑓 − ℎ)𝑔 ’(𝑥) = 𝑓𝑔 ’(𝑥) − ℎ𝑔 ’(𝑥) = 0 for all  𝑥 ∈ (𝑎, 𝑏), it follows from Corollary 3.12 that there exists a 

constant 𝐶 such that 𝑓(𝑥) − ℎ(𝑥) = 𝐶 for all  𝑥 ∈ (𝑎, 𝑏). Therefore, the desired result holds. 

Theorem 3.14: If 𝑓, 𝑔 are differentiable at 𝑥0, and 𝑔 ’(𝑥0) ≠ 0, then  𝑓𝑔 ’(𝑥) =
𝑓 ’(𝑥0))

𝑔 ’(𝑥0)
 . 

Proof  𝑓𝑔 ’(𝑥) = lim
𝑥→𝑥0

 
𝑓(𝑥)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)
= lim

𝑥→𝑥0

 

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
𝑔(𝑥)−𝑔(𝑥0)

𝑥−𝑥0

=
𝑓 ’(𝑥0))

𝑔 ’(𝑥0)
 .                                q.e.d. 
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Theorem 3.15 (Cauchy’s Mean Value Theorem): Assume that 𝑔 is a strictly increasing function on [𝑎, 𝑏]. If 𝑓, ℎ are 

continuous on [𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏), ℎ(𝑏) ≠ ℎ(𝑎), and ℎ𝑔 ’(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then 

there is  𝜉 ∈ (𝑎, 𝑏) such that  

                                                                                   
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
=

𝑓𝑔 ’(𝜉)

ℎ𝑔 ’(𝜉)
.                                                                                    (27) 

Proof  Let 𝐹(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
∙ ℎ(𝑥), then 

                                                                     𝐹𝑔 ’(𝑥) = 𝑓𝑔 ’(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
∙ ℎ𝑔 ’(𝑥) .                                                             (28) 

Since 

                                                               𝐹(𝑎) = 𝑓(𝑎) −
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
∙ ℎ(𝑎) =

𝑓(𝑎)ℎ(𝑏)−𝑓(𝑏)ℎ(𝑎)

ℎ(𝑏)−ℎ(𝑎)
 ,                                              (29) 

                                                               𝐹(𝑏) = 𝑓(𝑏) −
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
∙ ℎ(𝑏) =

𝑓(𝑎)ℎ(𝑏)−𝑓(𝑏)ℎ(𝑎)

ℎ(𝑏)−ℎ(𝑎)
 .                                               (30) 

Thus, 𝐹(𝑎) = 𝐹(𝑏). By Rolle’s theorem, there exists  𝜉 ∈ (𝑎, 𝑏) such that 𝐹𝑔 ’(𝜉) = 0. Therefore, 

                                                                            𝑓𝑔 ’(𝜉) −
𝑓(𝑏)−𝑓(𝑎)

ℎ(𝑏)−ℎ(𝑎)
∙ ℎ𝑔 ’(𝜉) = 0 .                                                                 (31) 

Hence, the desired result holds.                                                                                   q.e.d.                                       

Theorem 3.16 (Fundamental Theorem of Calculus): If 𝑔 is a strictly increasing function on [𝑎, 𝑏], and 𝑓 is continuous 

on [𝑎, 𝑏], then 

(I) 𝐺(𝑥) = ∫ 𝑓
𝑥

𝑎
(𝑥)𝑑𝑔(𝑥) is differentiable with respect to 𝑔 on (𝑎, 𝑏), and 

                                                                          𝐺𝑔 ’(𝑥) =
𝑑

𝑑𝑔(𝑥)
∫ 𝑓

𝑥

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑥)                                                           (32) 

for all 𝑥 ∈ (𝑎, 𝑏). 

(II) If 𝐹(𝑥) is continuous on [𝑎, 𝑏] and differentiable with respect to 𝑔 on (𝑎, 𝑏) with 𝐹𝑔 ’(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), 

then 

                                                                           ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝐹(𝑏) − 𝐹(𝑎).                                                                     (33) 

Proof  (I) 𝐺𝑔 ’(𝑥+) = lim
𝑡→𝑥+

𝐺(𝑡)−𝐺(𝑥)

𝑔(𝑡)−𝑔(𝑥)
 

                                    = lim
𝑡→𝑥+

∫ 𝑓
𝑡

𝑎 (𝑢)𝑑𝑔(𝑢)−∫ 𝑓
𝑥

𝑎 (𝑢)𝑑𝑔(𝑢)

𝑔(𝑡)−𝑔(𝑥)
  

                                    = lim
𝑡→𝑥+

∫ 𝑓
𝑡

𝑥 (𝑢)𝑑𝑔(𝑢)

𝑔(𝑡)−𝑔(𝑥)
  

                                    = lim
𝑡→𝑥+

𝑓(𝜉)[𝑔(𝑡)−𝑔(𝑥)]

𝑔(𝑡)−𝑔(𝑥)
  (where 𝜉 ∈ (𝑥, 𝑡) by mean value theorem for integrals) 

                                    = lim
𝑡→𝑥+

𝑓(𝜉)  

                                    = 𝑓(𝑥).                                                                                                                                                    (34) 

Also, we have 𝐺𝑔 ’(𝑥−) = 𝑓(𝑥), and hence 𝐺𝑔 ’(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏). 

(II)Since 𝐹𝑔 ’(𝑥) = 𝐺𝑔 ’(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), it follows from Corollary 3.13 that 

                                                                                     𝐹(𝑥) = 𝐺(𝑥) + 𝐶                                                                                   (35)      

for some constant 𝐶. Since  𝐹(𝑎) = 𝐺(𝑎) + 𝐶 = 𝐶, it follows that 
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                                                                              𝐹(𝑏) = 𝐺(𝑏) + 𝐹(𝑎).                                                                                   (36)     

Therefore, 

                                                                         ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) = 𝐺(𝑏) = 𝐹(𝑏) − 𝐹(𝑎).                             q.e.d. 

 

Remark 3.17: We provide another proof of part (II) of Theorem 3.16 as follows: 

If ∆= {𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚 = 𝑏} is any partition of the interval [𝑎, 𝑏], ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 for 𝑘 = 1, ⋯ , 𝑚, and ‖∆‖ =

max
𝑘=1,⋯,𝑚

{∆𝑥𝑘}. Then 

 𝐹(𝑏) − 𝐹(𝑎) = lim
‖∆‖→0

∑ 𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)𝑚
𝑘=1   

                         = lim
‖∆‖→0

∑
𝐹(𝑥𝑘)−𝐹(𝑥𝑘−1)

𝑔(𝑥𝑘)−𝑔(𝑥𝑘−1)
∙ [𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)]𝑚

𝑘=1   

                         = lim
‖∆‖→0

∑ 𝐹𝑔 ’(𝜉𝑘) ∙ [𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)]𝑚
𝑘=1   (where 𝜉𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] by mean value theorem for derivatives) 

                         = lim
‖∆‖→0

∑ 𝑓(𝜉𝑘) ∙ [𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)]𝑚
𝑘=1     (since 𝐹𝑔 ’(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏)) 

                         = ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑔(𝑥) .                                                                                                 q.e.d. 

IV.   CONCLUSION 

In this paper, we obtain a new definition of derivative based on Riemann-Stieltjes integral. Some important properties of 

this new calculus is studied, such as product rule, quotient rule, chain rule, and fundamental theorem of calculus. Moreover, 

our results are generalizations of classical calculus results. In the future, we will continue to use this new calculus to solve 

the problems in engineering mathematics and ordinary differential equations. 
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